二氧化碳捕集與利用之裝置及處理方法
環境工程學系 盧明俊教授
本研究團隊開發的技術是在常溫常壓下,先在吸收槽中用鹼液捕集來自煙道氣中二氧化碳,再導入獨步全球的流體化床結晶槽,以均質結晶技術合成碳酸鈣均質結晶顆粒,結晶槽中的吸收液再迴流至吸收槽吸收二氧化碳,過程中因為鈣離子加入結晶塔時,已補充足夠之鹼度,所以,迴流吸收液亦可直接再吸收煙道氣排出之二氧化碳,無須再添加任何藥劑,也無須排出,因此本創新技術不會產生廢水。所產生之高品質輕質碳酸鈣結晶粒,可回收做為各種製程之添加劑本處理程序透過流體化床均質結晶技術,可在達到碳排減量的同時將資源循環利用,在淨零排放與永續發展方面皆有優秀的開發潛力。
二氧化碳促進傳輸型無機碳/矽複合膜材之開發與碳捕獲應用
環境工程學系 曾惠馨教授
本研究團隊所開發之無機碳/矽複合膜:
◼︎上層材料為具高度二氧化碳親和性之有機矽(organosilica)可提昇二氧化碳表面擴散能力,進而增加二氧化碳傳輸。
◼︎底層材料為碳分子篩選薄膜(Carbon molecular sieving membrane),其具有接近氣體分子維度的埃級孔洞結構,而表現出優異的氣體分離表現。
◼︎透過雙層膜結構的複合,非但可提供選擇性氣體篩分路徑,亦可加速二氧化碳擴散,形成CO2促進傳輸碳/矽複合膜。
◼︎相較於其他氣體分離膜材,該複合膜材亦展現極佳的碳捕獲效率。
◼︎上層材料為具高度二氧化碳親和性之有機矽(organosilica)可提昇二氧化碳表面擴散能力,進而增加二氧化碳傳輸。
◼︎底層材料為碳分子篩選薄膜(Carbon molecular sieving membrane),其具有接近氣體分子維度的埃級孔洞結構,而表現出優異的氣體分離表現。
◼︎透過雙層膜結構的複合,非但可提供選擇性氣體篩分路徑,亦可加速二氧化碳擴散,形成CO2促進傳輸碳/矽複合膜。
◼︎相較於其他氣體分離膜材,該複合膜材亦展現極佳的碳捕獲效率。
RNA世界中碳循環的動態與演化
化學系 賴奕丞助理教授
RNA世界假說中認為RNA為地球上生命起源的最早的生物分子。
本實驗室致力於研究RNA酵素(ribozyme)的化學催化活性以及其演化如何受到環境調控的影響,我們會將RNA分子放入原始細胞的模型中,藉此理解化學環境的改變,對於其演化適應度的調控,我們期望藉由在實驗室調控變因,結合物理化學光譜分析技術以及高通量定序分析去理解不同RNA的分子行為跟分子演化的關聯性。
我們也可以藉由簡單的原始細胞模型,理解在RNA世界中碳循環演化的趨勢,這項研究不僅有助於我們理解生命是如何利用RNA酵素進行碳循環,也對環保材料的開發具有重要意義。在一個致力於減少碳排放並開發『負碳材料』的世界中,從我們的RNA研究中獲得的見解可以幫助我們更好地管理碳循環和生態穩定性。
本實驗室致力於研究RNA酵素(ribozyme)的化學催化活性以及其演化如何受到環境調控的影響,我們會將RNA分子放入原始細胞的模型中,藉此理解化學環境的改變,對於其演化適應度的調控,我們期望藉由在實驗室調控變因,結合物理化學光譜分析技術以及高通量定序分析去理解不同RNA的分子行為跟分子演化的關聯性。
我們也可以藉由簡單的原始細胞模型,理解在RNA世界中碳循環演化的趨勢,這項研究不僅有助於我們理解生命是如何利用RNA酵素進行碳循環,也對環保材料的開發具有重要意義。在一個致力於減少碳排放並開發『負碳材料』的世界中,從我們的RNA研究中獲得的見解可以幫助我們更好地管理碳循環和生態穩定性。
3D/4D 列印分析裝置開發與應用
化學系 蘇正寬副教授
蘇正寬教授研究團隊開發溫敏性光固化列印材料,設計製作4D列印溫控固相萃取裝置。此分析方法對於錳、鈷、鎳、銅、鋅、鎘與鉛離子的偵測極限可達22.1 ng L–1,具有取代商業化控制閥串連而成線上自動化樣品前處理系統的潛力。成果發表於Analytical Chemistry 2021, 93, 11497,並被選為當期封面故事。
新世代鈀金屬預催化劑開發
化學系 盧臆中助理教授團隊
盧臆中教授研究團隊與張裕昌教授合作,成功開發高效異配位鈀金屬預催化劑,可在35°C三分鐘內,將低反應性的氯苯進行碳碳鍵加成偶合反應,產率達到99%。其特殊的催化活性物質與傳統反應機制截然不同,使得化學家有機會利用鹽類添加劑中,鹼金族陽離子的大小與陰離子的鹼性去調控催化劑的活性。(成果已發表在ChemCatChem期刊)。
此預催化劑非常穩定,深具應用價值。在許多反應系統中皆展現優秀的催化交叉偶合能力,可替代傳統催化劑在合成反應上達到節能目標。
此預催化劑非常穩定,深具應用價值。在許多反應系統中皆展現優秀的催化交叉偶合能力,可替代傳統催化劑在合成反應上達到節能目標。